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Abstract
We constructed a QSPR model from 116 organic compounds for the prediction of fluorophilicity. The 1268 theoretical descriptors explored by

means of linear regressions, encoding different aspects of the topological, geometrical, and electronic molecular structure, lead to an optimal seven-

parameter equation with a correlation coefficient R = 0.9807 and cross-validation parameter Rl-15%-o = 0.9677. As a more realistic and practical

application of present optimal QSPR model, it is applied to the estimation of the fluorophilicity of 69 non-yet synthesized molecular structures.

# 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Nowadays, the fluorous chemistry of compounds exhibit

many interesting applications in synthesis and catalysis. The

tendency of an organic substance to dissolve in fluorous media

has continuously gained importance after the disclosure of the

fluorous biphase catalysis in 1994 [1], as biphasic reactions take

advantage of the fact that organic and fluorous phases are

typically immiscible at room temperature, but may homogenize

at elevated temperatures. One can therefore expose reactants in

an organic phase to a catalyst in a fluorous phase simply by

heating, and separate products (in the organic phase) from the

catalyst (in the fluorous phase) on cooling. Other useful

advantages of the techniques based on the fluor content rely on

the unique physical and chemical properties associated with

perfluorinated type of solvents, such as inertness, non-toxicity,

and easy separation [2].

The fluorophilicity of a compound can be quantified through

the associated partition coefficient (P) between f1uorous

(CF3C6F11) and organic (CH3C6H5) layers [3].

ln P ¼ ln

�
cðCF3C6F11Þ
cðCH3C6H5Þ

�
; T ¼ 298 K (1)
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It is well-known that the experimental design of fluorophilic

molecules demands a minimum fluorine content of 60%, the

presence of one or more perfluorinated-alkyl chain called

‘ponytail’, and the absence of hydrogen bonding or polar

groups which may interact with the organic phase. Further-

more, the fluorination of molecules often takes the form of

adding long ponytails [4].

Clearly, the design of fluorous biphase catalysis experi-

ments would be substantially improved by a reliable

prediction of the fluorophilicity for a given molecule. A

generally accepted remedy for overcoming the lack of

experimental data in complex chemical phenomena is the

analysis based on quantitative structure-property relation-

ships (QSPR) [5], which in the present case may provide

adequate predictions of fluorophilicity. The ultimate role of

the different formulations of the QSPR theory is to suggest

mathematical models for estimating relevant properties of

interest, especially when they cannot be experimentally

determined for some reason. These studies simply rely on the

assumption that the structure of a compound determines its

physicochemical properties. The molecular structure is

therefore translated into the so-called molecular descriptors

through mathematical formulae obtained from several

theories, such as Chemical Graph Theory, Information

Theory, Quantum Mechanics, etc. [6,7]. There exist more

than a thousand theoretical descriptors available in the

literature, and one usually faces the problem of selecting
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those which are the most representative of the property under

consideration.

Several QSPR studies on fluorophilicity were published in

the last 5 years. In 2001, Kiss et al. [8] estimated this property

for 59 fluorinated organic molecules using a neural network

(NN) combination of eight molecular descriptors chosen from a

pool of almost a hundred variables. In 2002, Huque et al. [9]

employed a modified version of the linear free-energy

relationships (LFER) on 91 chemicals to derive a five-

descriptor model with structural interpretation, characterized

with statistical parameters R = 0.9742 and S = 0.566. In 2004,

Duchowicz et al. [10] employed the same data set to propose a

different QSPR model based on linear regression and the atoms

and chemical bonds as molecular descriptors.

In 2004, de Wolf et al. [11] applied a universal lipophilicity

model based on the mobile order/disorder (MOD) solution

theory to predict partition coefficients for 88 molecules in either

PFMCH/toluene or FC-72/benzene. However, those predictions

required the knowledge of molecular volumes and modified

non-specific cohesion parameters for the solute; data which are

commonly unavailable. The same year, Daniels et al. [12]

proposed a modified LFER for 93 organic compounds by

means of five molecular surface area descriptors, achieving

R = 0.9716 and S = 0.638 and showing an almost equal

accuracy to the previous reported models.

The present study reports the predictions of fluorophilicity for

116 organic compounds whose experimental data were collected

from two previous publications [9,13]. For this purpose, two

widely applied modeling strategies based on linear regressions

are employed, namely the forward stepwise regression and the

replacement method [14–17]. In Section 2 we show and discuss

our results. In Section 3 we summarize the main conclusions of

this study. Finally, in Section 4 we outline the employed methods.

2. Results and discussion

We first apply the RM to the search for the best

fluorophilicity–structure relationships. The equation that leads
Table 1

Classification of molecular descriptors involved in the QSPR models

Symbol Description

MATS1v Moran autocorrelation-lag 1/weighted by atomic

RDF055p RDF-5.5 weighted by atomic polarizabilities

MAXDP Maximal electrotopological positive variation

Har Harary H index

CIC1 Complementary information content (neighborh

HOMA Armonic oscillator model of aromaticity index

SEigp Eigenvalue sum from polarizability weighted di

RTm R total index/weighted by atomic masses

HATSp Leverage-weighted total index/weighted by atom

PCD Difference of multiple path counts to path coun

H2e H autocorrelation of lag 2/weighted by atomic S

C-006 Number of CH2RX groups

N-068 Number of Al3–N groupsc

GATS1p Geary autocorrelation-lag 1/weighted by atomic

a RDF, radial distribution function.
b GETAWAY, GEometry, Topology and Atoms-Weighted AssemblY.
c Al, aliphatic groups.
to the best cross-validation parameters Rl-15%-o and Sl-15%-o

contains seven molecular descriptors of different type:

ln P ¼ �5:688ð�0:5Þ � 0:348ð�0:01ÞSEigp

þ0:164ð�0:02ÞRDF055pþ 0:0531ð�0:05ÞMAXDP

�0:197ð�0:01ÞHarþ 1:178ð�0:1ÞCIC1

�6:488ð�0:9ÞMATS1vþ 1:606ð�0:1ÞHOMA

N ¼ 116; R ¼ 0:9806; S ¼ 0:494; F ¼ 387:7;

p< 10�4; AIC ¼ 0:280; FIT ¼ 16:450

Rloo ¼ 0:9778; Sloo ¼ 0:511Rl-15%-o ¼ 0:9677;

Sl-15%-o ¼ 0:620 (2)

where the absolute errors of the regression coefficients are

given in parentheses; R the correlation coefficient of the model,

F the Fisher ratio, p the significance of the model, AIC the

Akaike’s information criterion and FIT is the Kubinyi function.

A brief description for each variable appearing in all the

proposed models is presented in Table 1. The application of

the FSR procedure does not improve the quality of this relation-

ship, as it leads to the following equation:

ln P ¼ �2:238ð�0:6Þ þ 0:151ð�0:005ÞRTm

�1:902ð�0:2ÞHATSp� 0:00611ð�0:0007ÞPCD

þ0:526ð�0:07ÞH2e� 0:362ð�0:06ÞC� 006

þ0:760ð�0:2ÞN� 068þ 0:807ð�0:3ÞGATS1p

N ¼ 116; R ¼ 0:9740; S ¼ 0:572; F ¼ 285:5;

p< 10�4; AIC ¼ 0:375; FIT ¼ 12:110

Rloo ¼ 0:9700; Sloo ¼ 0:5932Rl�15%�o ¼ 0:9281;

Sl�15%�o ¼ 0:9153 (3)

Once again, we conclude that the RM is preferable to the

FSR for exploring large sets of descriptors.

Table 2 shows the predicted values of fluorophilicity and the

corresponding residuals between parentheses. We may consider

the closely related aromatic esters 64 (Rf7C(O)OCH2Ph) and 65
Type

van der Waals volumes 2D-autocorrelations

RDFa

Topological

Topological

ood symmetry of first-order) Topological

Aromaticity indices

stance matrix Topological

GETAWAYb

ic polarizabilities GETAWAY

ts Topological

anderson electronegativities GETAWAY

Atom-centred fragments

Atom-centred fragments

polarizabilities 2D-autocorrelations



Table 2

Experimental values of fluorophilicity and predictions achieved by Eq. (2) and Huque et al. [9]

N Compound name Exp. Eq. (2) Huke et al. [9]

1 Decane �2.86 �3.09 (0.23) �3.07 (0.21)

2 Undecane �3.13 �3.28 (0.15) �3.13 (0.00)

3 Dodecane �3.35 �3.47 (0.12) �3.19 (�0.16)

4 Tridecane �3.71 �3.67 (�0.04) �3.24 (�0.47)

5 Tetradecane �3.94 �3.87 (�0.07) �3.30 (�0.64)

6 Hexadecane �4.50 �4.30 (�0.20) �3.41 (�1.09)

7 Dec-1-ene �2.99 �3.50 (0.51) �3.29 (0.30)

8 Undec-1-ene �3.26 �3.65 (0.39) �3.34 (0.08)

9 Dodec-1-ene �3.66 �3.81 (0.15) �3.40 (�0.26)

10 Tridec-1-ene �3.94 �3.98 (0.04) �3.46 (�0.48)

11 Tetradec-1-ene �4.12 �4.17 (0.05) �3.51 (�0.61)

12 Hexadec-1-ene �4.70 �4.56 (�0.14) �3.62 (�1.08)

13 Rf8CH CH2 2.67 1.65 (1.02) 2.82 (�0.15)

14 Cyclohexanone �3.79 �3.87 (0.08) �3.96 (0.17)

15 Cyclohexenone �4.06 �4.57 (0.51) �4.25 (0.19)

16 Cyclohexanol �4.12 �4.31 (0.19) �4.74 (0.62)

17 Trifluoroethanol �1.77 �1.92 (0.15) �1.37 (�0.40)

18 (CF3)2CHOH �1.02 �1.07 (0.05) �0.70 (�0.32)

19 Rf6(CH2)2OH 0.10 0.05 (0.05) 0.47 (�0.37)

20 Rf6(CH2)3OH �0.24 �0.14 (�0.10) 0.50 (�0.74)

21 Rf8(CH2)2OH 1.02 1.47 (�0.45) 0.72 (0.30)

22 Rf8(CH2)3OH 0.59 1.16 (�0.57) 0.80 (�0.21)

23 Rf10(CH2)3OH 1.42 2.10 (�0.68) 1.25 (0.17)

24 Pentafluorobenzene �1.24 �1.40 (0.16) �0.58 (�0.66)

25 Hexafluorobenzene �0.94 �0.34 (�0.60) �0.12 (�0.82)

26 Ethylbenzene �4.41 �3.31 (�1.10) �4.23 (�0.18)

27 Dodecylbenzene �4.70 �4.53 (�0.17) �4.79 (0.09)

28 Rf8(CH2)3C6H5 �0.02 0.48 (�0.50) 0.38 (�0.40)

29 o-Rf6(CH2)3C6H4(CH2)3Rf6 1.03 1.20 (�0.17) 1.37 (�0.34)

30 o-Rf8(CH2)3C6H4(CH2)3Rf8 2.34 2.69 (�0.35) 2.32 (0.02)

31 o-Rf10(CH2)3C6H4(CH2)3Rf10 3.62 3.40 (0.22) 3.23 (0.39)

32 m-Rf8(CH2)3C6H4(CH2)3Rf8 2.28 2.96 (�0.68) 2.32 (�0.04)

33 p-Rf8(CH2)3C6H4(CH2)3Rf8 2.33 2.97 (�0.64) 2.32 (0.01)

34 Rf8(CH2)3Cl 0.03 0.74 (�0.71) 0.37 (�0.34)

35 Rf8(CH2)3NH2 0.85 0.29 (0.56) 1.29 (�0.44)

36 Rf8(CH2)3NH(CH2)3Rf8 3.32 2.75 (0.57) 3.34 (�0.02)

37 (Rf6(CH2)2)3P 4.41 4.46 (�0.05) 3.75 (0.66)

38 (Rf8(CH2)3)3P 4.41 – 4.79 (�0.38)

39 (Rf8(CH2)4)3P 4.50 – 4.53 (�0.03)

40 (Rf8(CH2)5)3P 4.50 – 4.27 (0.23)

41 (Rf6(CH2)2)2PC10H19 (menthyl) 1.29 0.92 (0.37) 1.11 (0.18)

42 (Rf8(CH2)2)2PC10H19 (menthyl) 2.70 1.92 (0.78) 2.10 (0.60)

43 ( p-Rf6C6H4)3P �1.32 �1.31 (�0.01) �0.57 (�0.75)

44 ( p-Rf8C6H4)3P 0.76 – 0.78 (�0.02)

45 Ph(CH2)2SiH3 �3.29 �3.22 (�0.07) �4.53 (1.24)

46 Ph(CH2)2SiOC8H15 �5.11 �5.15 (0.04) �5.56 (0.45)

47 Ph(CH2)2SiOC6H11 (cyclohexyl) �4.82 �4.89 (0.07) �5.56 (0.74)

48 Rf6I 1.31 1.53 (�0.22) 0.34 (0.97)

49 Rf8I 2.04 2.69 (�0.65) 0.93 (1.11)

50 Rf10I 2.84 2.43 (0.41) 1.48 (1.36)

51 Rf8CH CH2 2.67 1.92 (0.75) 2.82 (�0.15)

52 Rf8(CH2)3SH 0.24 1.04 (�0.80) 1.23 (�0.99)

53 Rf8N(CH2CH2)2 0.86 0.91 (�0.05) 1.48 (�0.62)

54 Rf6S(CH2)2CO2Et �0.67 �0.17 (�0.50) �0.05 (�0.62)

55 Rf8S(CH2)2CO2Et 0.04 0.76 (�0.72) 0.49 (�0.45)

56 CF3SPh �2.45 �2.87 (0.42) �2.01 (�0.44)

57 m-CF3SC6H4CF3 �1.58 �2.17 (0.59) �0.85 (�0.73)

58 Rf8SPh 0.59 1.03 (�0.44) �0.15 (0.74)

59 Rf7CH2NHMe 1.07 0.79 (0.28) 1.49 (�0.42)

60 Rf7CH2NMe2 1.53 1.10 (0.43) 1.63 (�0.10)

61 Rf7CH2N(CH2CH2)2O 0.14 0.43 (�0.29) 0.60 (�0.46)

62 Rf7CH2NHCH(Me)Ph �0.87 �0.73 (�0.14) �0.65 (�0.22)

63 Rf7C(O)Ph 0.48 0.18 (0.30) –

64 Rf7C(O)OCH2Ph 2.14 0.54 (1.60) –

A.G. Mercader et al. / Journal of Fluorine Chemistry 128 (2007) 484–492486



Table 2 (Continued )

N Compound name Exp. Eq. (2) Huke et al. [9]

65 p-Rf7C(O)OCH2C6H4OCF3 3.15 1.55 (1.60) –

66 Rf7C(O)SMe 1.16 0.92 (0.24) 0.57 (0.59)

67 Rf7C(O)NHMe 0.15 0.82 (�0.67) �0.23 (0.38)

68 Rf7C(O)NMe2 0.34 0.72 (�0.38) 0.66 (�0.32)

69 Rf7C(O)N(CH2CH2)2O �0.62 �0.32 (�0.30) �0.38 (�0.24)

70 Rf7C(S)Me 1.08 1.46 (�0.38) 0.19 (0.89)

71 Rf7C(S)NMe2 �0.66 0.22 (�0.88) �0.20 (�0.46)

72 Rf7C(S)N(CH2CH2)2O �1.56 �1.06 (�0.50) �1.18 (�0.38)

73 Rf7C(S)NHCH(Me)Ph �1.84 �1.03 (�0.81) �3.18 (1.34)

74 C6H6 �2.77 �2.58 (�0.19) �4.12 (1.35)

75 CF3Ph �1.96 �2.39 (0.43) �1.82 (�0.14)

76 Rf6Ph 0.54 0.33 (0.21) 0.24 (0.30)

77 Rf8Ph 1.24 1.38 (�0.14) 0.78 (0.46)

78 Rf10Ph 1.77 2.29 (�0.52) 1.28 (0.49)

79 o-Rf8C6H4CF3 1.50 1.52 (�0.02) 1.37 (0.13)

80 m-Rf8C6H4CF3 2.37 1.99 (0.38) 1.37 (1.00)

81 p-Rf8C6H4CF3 2.13 2.01 (0.12) 1.37 (0.76)

82 p-Rf8C6H4Rf8 4.98 4.63 (0.35) –

83 [p-CF3C6H4(CF2)4]2 �0.56 �0.10 (�0.46) �0.18 (�0.38)

84 o-Rf6(CH2)2C6H4Cl �0.64 �0.99 (0.35) �0.63 (�0.01)

85 p-Rf6(CH2)2C6H4Cl �1.02 �1.02 (0.00) �0.63 (�0.39)

86 p-Rf8(CH2)2C6H4Cl �0.37 �0.05 (�0.32) �0.04 (�0.33)

87 o-Rf6(CH2)2C6H4Br �1.05 �1.12 (0.07) �1.22 (0.17)

88 m-Rf6(CH2)2C6H4Br �1.44 �1.09 (�0.35) �1.22 (�0.22)

89 p-Rf6(CH2)2C6H4Br �1.49 �1.13 (�0.36) �1.22 (�0.27)

90 o-Rf8C6H4CO2Me �0.39 0.34 (�0.73) �0.18 (�0.21)

91 m-Rf8C6H4CO2Me 0.12 �0.11 (0.23) �0.18 (0.30)

92 p-Rf8C6H4CO2Me �0.01 0.00 (�0.01) �0.18 (0.17)

93 1,3,5-Rf8C6H3(CF3)2 4.05 2.70 (1.35) –

94 1,3,5-(Rf8)2C6H3CO2Me 4.41 3.60 (0.81) –

95 1,3,5(Rf8)2C6H3CH2OH 3.62 3.19 (0.43) –

96 1,3,5-(Rf8)2C6H3CHO 4.25 4.10 (0.15) –

97 2-Rf8C5H4N (pyridine) 0.54 1.12 (�0.58) 0.64 (�0.10)

98 3-Rf8C5H4N (pyridine) 0.88 1.02 (�0.14) 0.64 (0.24)

99 4-Rf8C5H4N (pyridine) 0.80 1.28 (�0.48) 0.64 (0.16)

100 (CF3)3CO(CH2)2NH2 �0.14 �0.46 (0.32) –

101 (CF3)3CO(CH2)2NH(CH3) �0.08 �0.19 (0.10) –

102 [(CF3)3CO(CH2)2]2NH 1.82 2.02 (�0.20) –

103 (CF3)3CO(CH2)2NH(CH2)3Rf8 2.69 2.32 (0.37) –

104 (CF3)3CO(CH2)2N(CH3)2 0.34 0.25 (0.08) –

105 [(CF3)3CO(CH2)2]2NCH3 2.03 2.20 (�0.17) –

106 [(CF3)3CO(CH2)2]3N 3.62 3.63 (�0.01) –

107 Rf8(CH2)3NH2 0.85 0.29 (0.56) –

108 Rf8(CH2)4NH2 0.54 0.40 (0.14) –

109 Rf8(CH2)5NH2 0.28 0.24 (0.04) –

110 Rf7CH2NH(CH3) 1.07 0.79 (0.28) –

111 Rf8(CH2)3NH(CH3) 0.88 0.76 (0.12) –

112 [Rf4(CH2)3]2NH 0.71 0.91 (�0.20) –

113 [Rf6(CH2)3]2NH 1.98 2.12 (�0.14) –

114 [Rf10(CH2)3]2NH 4.08 4.28 (�0.20) –

115 [Rf8(CH2)3]2NH 3.32 3.53 (�0.21) –

116 [Rf8(CH2)4]2NH 2.97 3.43 (�0.46) –

117 [Rf8(CH2)5]2NH 2.59 2.88 (�0.29) –

118 Rf7CH2N(CH3)2 1.53 1.10 (0.43) –

119 Rf8(CH2)3N(CH3)2 1.37 0.92 (0.45) –

120 [Rf8(CH2)3]2NCH3 3.63 3.28 (0.35) –

Residuals are presented in parentheses. Rfn refers to (CF2)n�1CF3.
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( p-Rf7C(O)OCH2C6H4OCF3) as outliers, with a residual

value exceeding 3S. It is not possible to determine if such

deviation is either a statistical consequence of present

selection of descriptors in Eq. (2) or a physical (meaningful)

result. It is quite possible that these compounds are somewhat

structurally different to the others in the training set. In many
cases present residuals are smaller than those of Huque et al.

[9] also shown in Table 2. We mention that we were unable to

include four molecules (38, 39, 40 and 44) from that previous

study because the freely downloadable version of Dragon 3.0

is limited up to 100 atoms. On the other hand, those molecules

identified by Huque et al. as outliers and omitted from their



Fig. 3. Histogram of experimental data.

Fig. 4. Histogram of SEigp descriptor.

Fig. 1. Predicted vs. experimental fluorophilicity.
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final model (63, 64, 65, 82, 93, 94, 95, 96) were included in

present calculation.

The plot of predicted versus experimental values of

fluorophilicity shown in Fig. 1 suggests that the 116 compounds

roughly follow a straight line. Fig. 2 shows the residuals in

terms of the experimental fluorophilicities, and demonstrates

that the best molecular descriptors given in Eq. (2) lead to a

model that follows a normal distribution and that does not obey

any kind of undesired pattern that would probably suggest the

presence of non-modelled factors contributing to the fluor-

ophilicity. The correlation matrix for Eq. (2) (indicated in

Table 3) reveals that there exists some degree of intercorrelation

between SEigp and Har (Rij = 0.9738), although these

descriptors carry some non-overlapping structural information

that makes the model to exhibits adequate predictive l-10%-o

cross-validation parameters measured on 100,000 randomly

generated cases of compounds exclusion. Figs. 3–10 include

the histograms of the experimental property and of each

molecular descriptor selected, revealing the distribution of the

chemical compounds in the different numerical intervals of the

descriptor variation.

Present QSPR equation includes different theoretical

descriptors derived from the molecular graph (G) and the

three-dimensional geometry, as Table 2 shows. The numerical

characterization of the molecular structure is given by: (a) four
Fig. 2. Dispersion plot of the residuals for Eq. (2).
topologicals: SEigp, the eigenvalue sum from polarizability

weighted distance matrix; MAXDP, the maximal electrotopo-

logical positive variation; Har, the Harary index; CIC1, the

complementary information content (neighborhood symmetry

of first-order); (b) a 2D-autocorrelation: MATS1v, the Moran

autocorrelation-lag 1/weighted by atomic van der Waals

volumes; (c) a radial distribution function: RDF055p, �5.5

weighted by atomic polarizabilities; (d) an aromaticity index:

HOMA, the armonic oscillator model of aromaticity index.

It is possible to argue some structural interpretation for the

numerical variables appearing in Eq. (2). In Chemical Graph

Theory, the distance matrix introduced by Harary in the 1960s

[18] accounts for the ‘‘through bond’’ interactions of atoms in
Fig. 5. Histogram of RDF055p descriptor.



Fig. 6. Histogram of MAXDP descriptor.
Fig. 8. Histogram of ClC1 descriptor.

Table 3

Correlation matrix for the descriptors of Eq. (2)

SEigp RDF055p MAXDP Har CIC1 MATS1v HOMA

SEigp 1 0.8059 0.7854 0.9738 0.4121 0.09542 0.09487

RDF055p 1 0.6357 0.8496 0.4684 0.2885 0.1510

MAXDP 1 0.7283 0.0242 0.1353 0.2478

Har 1 0.5284 0.1988 0.1868

CIC1 1 0.2766 0.09254

MATS1v 1 0.5124

HOMA 1
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molecules. The molecular descriptor SEigp characterizes the

distribution of the topological distances in G and differentiates

the nature of atoms through the atomic polarizability values.

Another descriptor from this equation is the index Har, which

contemplates in its calculation the reciprocal entries of the

distance matrix. This results from the fact that the interactions

among atoms decrease as the distance between them increases.

The topological descriptor CIC1 is obtained from the

Information Theory [19], and this sort of theoretical descriptor

measures the complexity of the molecule in terms of the

diversity of elements that includes in its chemical structure,

such as the type of atoms, bonds, cycles, etc. It expresses the

molecular symmetry by measuring the neighborhood of the

atoms (through the value of the vertex degrees) located at a
Fig. 7. Histogram of Har descriptor.
first-order distance (one single bond) of a considered atom, for

each vertex in G. The variable MAXDP is derived from the

hydrogen-depleted molecular graph and obtained from the

Kier–Hall intrinsic states of atoms as [20]:

MAXDP ¼ maxijDIij (4)

where DIi is the field effect on the ith atom due to the

perturbation of all other atoms as defined by Kier and Hall:

DIi ¼
X

i

ðIi � I jÞ
ðdi j þ 1Þ (5)

The sum runs over all the other atoms in the molecular

graph, I is the atomic intrinsic state and dij is the topological
Fig. 9. Histogram of MATS1v descriptor.



Fig. 10. Histogram of HOMA descriptor.

Table 4

Prediction of unknown fluorophilicity

N Name Eq. (2)

1 (Rf8)3P 5.84

2 1,3,4-(Rf8)3C6H3 5.21

3 p-Rf8C6F4Rf8 4.85

4 Rf11CF CF2 4.61

5 Rf9CF3 4.47

6 Rf9(CH2)2NH(CH2)2Rf9 4.45

7 p-Rf8C6H3FRf8 4.19

8 1,3,5-(Rf4)2C6H3Rf8 4.16

9 (Rf7CH2)3P 4.10

10 m-Rf16C6H3CHO 3.97

11 m-Rf16C6H3CH2OH 3.69

12 m-Rf16C6H3CO2Me 3.64

13 1,3-(Rf8)2-5-CO2CF3C6H3 3.05

14 CH3CH2NH(CH2)3Rf20 3.01

15 1-Rf16-2,3-F2-5-CH2OHC6H2 2.94

16 m-Rf17C6H3CO2Me 2.55

17 Rf9(CH2)2NH(CH2)2Rf2 2.31

18 (CF3)3CO(CF2)2NF2 2.18

19 o-Rf10(CH2)3C6H4(CH2)3Rf3 1.68

20 CH3(CH2)2NCH3(CH2)3Rf16 1.55

21 Rf8(CH2)3NH(CH2)3CF3 1.07

22 F5C6(CF2)2SiOC8F15 0.95

23 CF3SC6(CF3)5 0.68

24 o-Rf3(CH2)3C6F4(CH2)3Rf2 0.55

25 o-Rf4(CH2)3C6H4(CH2)3Rf3 0.32

26 o-Rf3(CH2)3C6H4(CH2)3Rf3 �0.04

27 1,3-(Rf5)2-5-(CH2)2SiOC8H15C6H3 �0.12

28 o-Rf3(CH2)3C6H4(CH2)3Rf2 �0.47

29 1,3-(Rf5)2-2,4-F2-5-(CH2)2SiOC8H15C6H �0.73

30 Rf8C(S)NHCH(Me)Ph �0.76

31 Pentafluoroethanol �0.81

32 7,10-Rf4-hexadec-1-ene �1.63

33 1-Rf7-4-(CH2)2SiOC8H15C6H4 �2.06

34 Ph(CH2)2SiF3 �2.08

35 4-F-1-CF3C6H4 �2.35

36 1,3,5-Trifluorobenzene �2.44

37 1,13-Difluorotridecane �2.90

38 1-(CF2)4CF2H-4-(CH2)2SiOC8H15C6H4 �2.92

39 6-Fluoroundecane �2.97

40 1,14-Difluorotetradecane �3.09

41 1-Fluorododecane �3.10

42 Cis-1,2-difluorododec-1-ene �3.13

43 6-Fluorodec-1-ene �3.24

44 2-Fluoroundec-1-ene �3.28

45 1,1-Difluorotridec-1-ene �3.30

46 10-Rf4-hexadec-1-ene �3.34

47 Propylbenzene �3.41

48 F5C6(CH2)2SiOC8H15 �3.72

49 F5C6(CF2)2SiOC8H15 �3.82

50 F5C6(CFH)2SiOC8H15 �3.88

51 Tetradec-1,13-ene �4.33

52 PhSiOPh �4.34

53 Hexadec-1,5,9,13-ene �4.46

54 CH2 CH(CH2)10C6H5 �4.60

55 1,2,3,4-F4-6-(CH2)2SiOC8H15C6H �4.67

56 F5C6CFHCH2SiOC8H15 �4.67

57 C8H15SiOC8H15 �4.70

58 Ph(CH2)2SiOPh �4.82

59 1,2,3-F3-5-(CH2)2SiOC8H15C6H2 �4.83

60 2,5-Cyclohexadienone �4.86

61 1,2,3-F3-4-(CH2)2SiOC8H15C6H2 �4.88

62 3-Cyclohexenol �5.01

63 1,2-F2-4-(CH2)2SiOC8H15C6H3 �5.03

64 1,2-F2-3-(CH2)2SiOC8H15C6H3 �5.04
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distance between the two considered atoms. The intrinsic state

of an atom is calculated as the ratio between the Kier–Hall

atomic electronegativity and the vertex degree, i.e. the number

of bonds of an atom, encoding information related to both

atomic partial charges and their topological position relative to

the whole molecule. Therefore, MAXDP represents the

maximum positive intrinsic state difference and can be related

to the electrophilicity of the molecule. This fact reveals the

importance of describing the fluorous electronegative con-

tributions to fluorophilicity, in complete agreement with the

empirical criteria for the design of fluorophilic compounds.

The structural variables introduced by Moran [21] correspond

to bi-dimensional autocorrelations between pairs of atoms in the

molecule, and are defined in order to reflect the contribution of a

considered atomic property to the property being investigated.

These can be readily calculated, i.e.: by summing products of

atomic weights of the terminal atoms of all the paths of a

prescribed length. For the case of MATS1v, the path connecting a

pair of atoms has a bond length and involves the van der Waals

volumes as weighting scheme to distinguish their nature.

Another optimal molecular descriptor selected by the RM is

RDF055p. The radial distribution function [22] of an ensemble of

atoms can be interpreted as the probability distribution of finding

an atom in a spherical volume of certain radius. For RDF055p,

the sphere radius is 5.5 Å and atomic polarizabilities are

employed as weighting scheme. Finally, the aromaticity index

HOMA [23,24] considers the presence/absence of aromatic rings

in the set of compounds, measuring thus the tendency of a bond

length to be comprised between a single and a double bond

length. HOMA takes the value 0 for an hypotetic non-aromatic

system, while it equals 1 in case of aromaticity.

The standardization of the regression coefficients [14] in

Eq. (2) enables to assign more importance to the variables of the

model exhibiting larger absolute standardized coefficients

(shown in parentheses), therefore achieving the following

ranking of contributions to ln P:

Seigp
ð3:398Þ

> Har
ð3:053Þ

> CIC1
ð0:348Þ

> RDF055p
ð0:327Þ

> HOMA
ð0:320Þ

> MATS1v
ð0:178Þ

> MAXDP
ð0:041Þ

(6)

From Eq. (2) it can be concluded that increased numerical

values of descriptors such as CIC1, RDF055p, HOMA and



Table 4 (Continued )

N Name Eq. (2)

65 Hexadec-1,3,5,7,9,11,13,15-ene �5.11

66 m-FC6H4(CH2)2SiOC8H15 �5.18

67 Icosane �5.21

68 o-FC6H4(CH2)2SiOC8H15 �5.24

69 1,3,5-Trihydroxybenzene �5.43

Rfn refers to (CF2)n�1CF3.
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MAXDP (with positive regression coefficients) and decreasing

values for the descriptors SEigp, Har and MATS1v (with

negative coefficients) would tend to predict higher fluorophili-

cities. The ranking of contributions given by Eq. (6) suggest

that the distribution of topological distances in the molecules

under investigation, expressed by descriptors such as SEigp and

Har, plays an essential role that influences the values of ln P.

As a practical application of the model obtained above we

predict the fluorophilicity of some non-yet synthesized

structures. Table 4 shows 69 compounds sorted according to

their fluorofilicity values. Present theoretical analysis reveals

greatly fluorophilic organic chemicals: (Rf8)3P(ln P = 5.84),

1,3,4-(Rf8)3C6H3 (ln P = 5.21), p-Rf8C6F4Rf8 (ln P = 5.85),

that in principle could be synthesized and employed as new

candidates for synthesis and catalysis.

3. Conclusions

We have derived an alternative structure–fluorophilicity

relationship presenting good predictive performance in a

training set composed of 116 organic compounds. Some of the

molecules included in the analysis were synthesized in a recent

study [9,13]. The statistical parameters of present QSPR model

compare fairly well with other ones reported previously in the

literature based on LFER and MOD [9,11]. The best theoretical

descriptors appearing in the final equation are able to reflect the

molecular size, symmetry, aromaticity, as well as the

importance of the fluorous-content in the organic compounds

under investigation.

4. Experimental

4.1. General procedures

The structures of the compounds are firstly pre-optimized

with the molecular mechanics force field (MM+) procedure

included in Hyperchem version 6.03 [25], and the resulting

geometries are further refined by means of the semiempirical

method Parametric Method-3 (PM3). We chose a gradient norm

limit of 0.01 kcal/Å for the geometry optimization.

We derive a set of 1268 molecular descriptors including

several types of variables: constitutional, topological, geome-

trical, charge, GEometry, Topology and Atoms-Weighted

AssemblY (GETAWAY), Weighted Holistic Invariant Molecular

descriptors (WHIM), 3D-Molecular Representation of Structure

based on Electron diffraction (3D-MoRSE), molecular walk

counts, BCUT descriptors, 2D-autocorrelations, aromaticity

indices, Randic molecular profiles, radial distribution functions,
functional groups and atom-centred fragments [26]. To this end

we resort to the free-software Dragon version 3.0 available in the

Web [27]. We excluded from our calculations the empirical and

property-based descriptors provided by the software. Further-

more ten constitutional descriptors and four quantum-chemical

descriptors (molecular dipole moments, total energies, and

homo–lumo energies), not provided by the program, were added

to the pool.

As it is custommary in this sort of studies, we validate the

predictive power of the model. The theoretical validation

practiced on our models is based on the leave-more-out cross-

validation procedure (l-n%-o) [28], with n% representing the

number of molecules removed from the training set. The

number of cases for random removal in l-n%-o are 100,000. We

proceed now to describe briefly the two different techniques

employed for searching the best descriptors via linear

regression algorithms.

4.2. The forward stepwise regression

It is our purpose to search between a large number of D

descriptors for an optimal subset of d descriptors that minimize

the standard deviation S. Therefore, d will be the number of

descriptors which are used for constructing a model. In other

words, we want to obtain the global minimum of S(d) where d is

a point in a space of D![d!(D � d)!] ones. A full search (FS) of

optimal variables requires D![d!(D � d)!] linear regressions.

The forward stepwise regression (FSR) [14] consists of a step

by step addition of descriptors to the model, initially without

any independent variable present in the regression, until there is

no variable left outside the equation that minimizes its S.

Here we define the standard deviation as follows:

S ¼ 1

N � d � 1

XN

i¼1

res2
i (7)

where N is the number of molecules in the training set, and resi

is the residual for molecule i (difference between the experi-

mental and predicted property). The FSR sacrifices accuracy

for a much smaller number of linear regressions than a FS.

4.3. The replacement method

Some time ago we proposed the replacement method (RM)

[15–17] that produces QSPR models that are quite close the FS

ones with much less computational work. The RM gives better

statistical parameters than the FSR and similar ones to the more

elaborated Genetics Algorithms [29]. The RM approaches the

minimum of S by judiciously taking into account the relative

errors of the coefficients of the least-squares model given by a

set of d descriptors d = {X1, X2, . . ., Xd}.

The quality of the final optimized equations obtained via the

two approaches FSR and RM was compared by means of two

different criteria: the Akaike criterion and the Kubinyi function.

Akaike’s information criterion (AIC) [30,31] considers the

statistical goodness of fit and the number of parameters that
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have to be estimated to achieve that degree of fit:

AIC ¼
�XN

i¼1

res2
i

�
N þ d þ 1

ðN � d � 1Þ2
(8)

Therefore, the model that produces the minimum AIC value

should be considered potentially the most useful. The Kubinyi

function (FIT) [32,33] closely relates to the Fisher ratio (F),

although the main disadvantage of F is its sensitivity to changes

in d, if d is small, and its lower sensitivity if d is large. The FIT

criterion has a low sensitivity toward changes in d values, as

long as they are small numbers, and a substantially increasing

sensitivity for large d values. The following equation is

employed:

FIT ¼ R2ðN � d � 1Þ
ðN þ d2Þð1� R2Þ

(9)

where R is the correlation coefficient. The best model will

present the highest value of the FIT function.
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